Uniqueness and stability of nonnegative solutions for semipositone problems in a ball
نویسندگان
چکیده
منابع مشابه
Uniqueness and Stability of Nonnegative Solutions for Semipositone Problems in a Ball
We study the uniqueness and stability of nonnegative solutions for classes of nonlinear elliptic Dirichlet problems on a ball, when the nonlinearity is monotone, negative at the origin, and either concave or convex.
متن کاملUniqueness and Nonexistence of Positive Solutions to Semipositone Problems
We consider the uniqueness of the positive solution to a semilinear elliptic equation with Dirichlet boundary condition and the nonlinearity satisfying f(0) < 0 and having asymptotic sublinear growth rate. A similar idea is also applied to the nonexistence of a positive solution to a superlinear problem.
متن کاملOn the existence of nonnegative solutions for a class of fractional boundary value problems
In this paper, we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation. By applying Kranoselskii`s fixed--point theorem in a cone, first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela--Ascoli theorem is used to take $C^1$ ...
متن کاملPositive Solutions for a Class of Infinite Semipositone Problems
We analyze the positive solutions to the singular boundary value problem −∆u = λ[f(u)− 1/u];x ∈ Ω u = 0; x ∈ ∂Ω, where f is a C function in (0,∞), f(0) ≥ 0, f ′ > 0, lims→∞ f(s) s = 0, λ is a positive parameter, α ∈ (0, 1) and Ω is a bounded region in R, n ≥ 1 with C boundary for some γ ∈ (0, 1). In the case n = 1 we use the quadrature method and for n > 1 we use the method of sub-super solutio...
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1993
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1993-1116249-5